Smart River Engineering

Chapter 4. Hydraulics of River Flows

Sung-Uk Choi

Department of Civil & Environmental Engineering Yonsei University

이 세상 사람들 모두 잠 들고 어둠 속에 갇혀서 꿈쪼차 잠이 들 때 을로 일어난 새벽을 두려워 말고 별을 보고 걸어가는 사람이 되라 의망을 만드는 사람이 되라

정호승 [희망을 만드는 사람이 되라] 중에서

Contents

- 1. Basic Properties
- 2. Cross Section Properties
- 3. Uniform Flows
- 4. Energy and Momentum Principles
- 5. Rapidly Varied Flows (Hydraulic Jump)
- 6. Gradually Varied Flows

1. Basic Properties 1883 Reynolds' Experiment Fig. 61. Osborn Reynolds' experiment Fig. 62. Two modes of flow: laminar and turbulent Popular VL Flow properties: V= characteristic velocity

L = characteristic length

Fluids property: v = kinematic viscosity

1. Basic Properties

Laminar Flows and Turbulent Flows

• Reynolds' No.

$$Re = \frac{VR_h}{V}$$

- · Ratio of inertia force to viscous force
- Characteristic velocity and length
- Critical Reynolds No. of 500 for Open-Channel Flows

1. Basic Properties

Subcritical Flows and Supercritical Flows

• Froude No.

$$Fr = \frac{V}{\sqrt{gD}}$$

- (Square root of) Ratio of inertia force to gravity force
- Characteristic velocity and length

2. Section Properties

A Longitudinal Profile of an Alluvial River

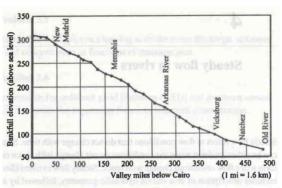


Figure 4.1. Longitudinal profile of the Mississippi River.

- Average slope = (310-70)*0.3/(485*1,600)=1/10,000
- Slope is defined to be positive.
- Left and right banks are referenced to a downstream-looking direction.

2. Section Properties

A Longitudinal Profile of a Semi-alluvial River

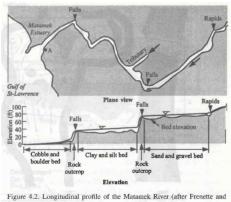
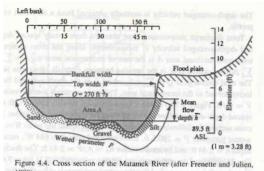


Figure 4.2. Longitudinal profile of the Matamek River (after Frenette and Julien, 1980).

• Discontinuities are seen in longitudinal profiles, bed material sizes, and flow conditions.

2. Section Properties

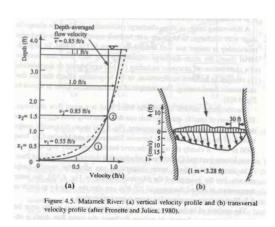
Geometric Properties



- T (top width) = 53.0 m
- P (wetted perimeter) = 54.0 m
- A (cross section area) = 45.9 m²
- D (mean flow depth) = 0.87 m
- R_h (hydraulic radius) = 0.85 m
- The mean flow depth is different from the stage.
- The hydraulic radius is very close to the mean flow depth.

2. Section Properties

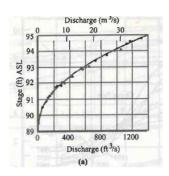
Velocity Distributions



- Q = 0.55*1+0.85*1+1.0*1+1.1*0.7=3.17 ft3/s (for T=1)
- Depth-averaged velocity = Q/3.7 = 0.86 ft/s

2. Section Properties

Rating Curve 1



- The rating curve is the stage-discharge relationship.
- The rating curve is unique for channels with bedrock control.
- The purpose of constructing the rating curve is to estimate the discharge for a certain stage.

2. Section Properties

Rating Curve 2

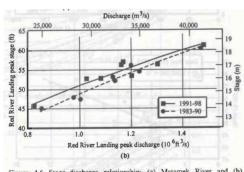
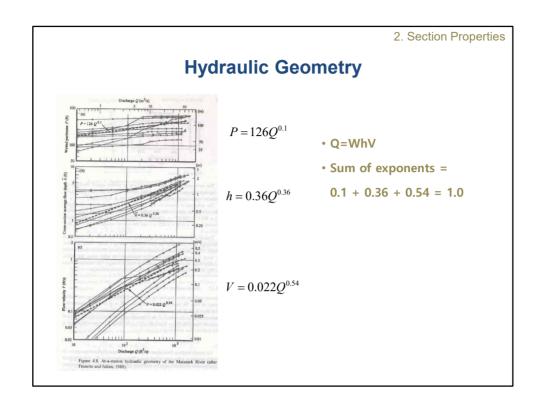


Figure 4.6. Stage-discharge relationship: (a) Matamek River and (b) Atchafalaya River.

- The rating curve shifts over time because
 - bed aggradation or degradation
 - changes in bedform
 - loop rating effects due to dynamic flood routing



Classification of Open-Chanel Flows

- uniform flow (등류)
- non-uniform flow (부등류)
 gradually varied flow (점변류)
 rapidly varied flow (급변류)
- unsteady flow (부정류)

Uniform Flows

• The discharge, water area, velocity, and depth are constant with distance.

velocity: velocity averaged over cross section and time

• The bottom slope (S_0) , the slope of the water surface (S_w) , and the slope of the energy line (S_e) are the same.

3. Uniform Flows

Continuity Equation

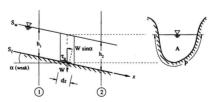


Fig. 3.2 Scheme of uniform flow.

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

- $Q = Q_1 = Q_2 = constant$
- $\cdot A_1 = A_2 = constant$
- $H_1 = H_2 = constant$

Momentum Equation

• A balance between the gravity & the bottom shear (friction)

$$F_g = \gamma A dx sin\theta$$

 $F_f = \tau_0 P dx$

$$\tau_0 = \gamma R_h S_0$$

This is valid regardless of the shape of the cross section.

3. Uniform Flows

Uniform Flow Formulas

Chezy formula

$$V = C\sqrt{R_h S_0}$$

Manning Formula

$$V = \frac{1}{n} R_h^{2/3} S_0^{1/2}$$

Darcy-Weisbach formula

$$V = \sqrt{\frac{8g}{f}} \sqrt{R_h S_0}$$

Dimensional Non-homogeneity

Manning Formula

$$V = \frac{1}{n} R_h^{2/3} S_0^{1/2}$$

- What is the dimensional of n?
- Why does this happen?

3. Uniform Flows

Comparisons of Uniform Flow Formulas

$$\sqrt{\frac{8}{f}} = \frac{C}{\sqrt{g}} = \frac{C_m}{\sqrt{g}} \frac{R_h^{1/6}}{n}$$

- Chezy C has a dimension of \sqrt{g}
- It is reasonable to think that $C_m \sim \sqrt{g}$ and $n \sim L^{1/6}$
- However, in practice, we take n dimensionless and

$$C_m \sim \frac{\sqrt{g}}{L^{1/6}}$$

Ex.4.2

Velocity Distribution

• Log law for smooth-bed flows

$$\frac{u}{u_*} = \frac{1}{\kappa} \ln \left(\frac{u_* z}{v} \right) + 5.5$$

• Log law for rough-bed flows

$$\frac{u}{u_*} = \frac{1}{\kappa} \ln \left(\frac{z}{k_s} \right) + 8.5$$

· Keulegan's resistance relation for rough-bed flows

$$\frac{U}{u_*} = \frac{1}{\kappa} \ln \left(11 \frac{H}{k_s} \right)$$

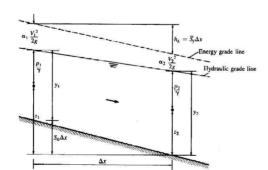
• Manning-Strickler form

$$\frac{U}{u_*} = 8.1 \left(\frac{H}{k_s}\right)^{1/6}$$

Ex.4.1

4. Energy & Momentum

Specific Energy



$$E_s = \frac{V_1^2}{2g} + y_1 = \frac{V_2^2}{2g} + y_2$$

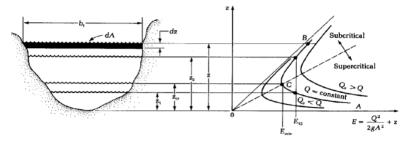
Figure 4-11 Definition sketch for flow in open channels

- The fact is that we cannot use the energy equation because the pressure changes vertically.
- The sum of velocity head and flow depth is constant.
- The sum is defined by specific energy that is total energy per unit weight.

4. Energy & Momentum

Specific Energy Curve

Specific-energy diagram and corresponding depths for various conditions.



- In general, for a fixed Es, two flow depths exist, alternate depths.
- · A critical flow can be defined by a flow in which specific energy is minimum.

4. Energy & Momentum

Critical Depth

• The specific energy has a minimum value under which the given

Q cannot occur.

$$\frac{dE_s}{dy} = 1 - \frac{Q^2}{gA^3} \frac{dA}{dy} = 1 - \frac{V^2}{gA} \frac{dA}{dy}$$
Note that dA/dy ≈ T. Then, we have

$$\frac{dE_s}{dy} = 1 - \frac{V^2 T}{gA} = 1 - \frac{V^2}{gD}$$

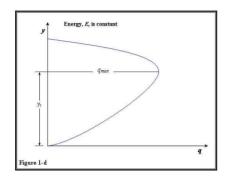
where D = hydraulic depth.

• Critical flow occurs when the specific energy is minimum.

$$y_c = \left(\frac{q^2}{g}\right)^{1/3} \qquad Min(E_s) = \frac{3}{2}y_c$$

4. Energy & Momentum

Flow Depth vs. Discharge Curve



$$Q = \sqrt{\frac{2g}{\alpha} (E_s - y) B^2 y^2}$$

$$y_c = \frac{2}{3}E_s$$

• For a fixed Es, critical flow is made when the discharge is maximum.

4. Energy & Momentum

Froude Number (1)

• The Froude number is defined by $Fr = \frac{V}{\sqrt{gD}}$

$$Fr = \frac{V}{\sqrt{gD}}$$

- Square root of the ratio of the inertia force to the gravity force (Can you show this?)
- The most important dimensionless number for the open-channel flow.
- Note that the characteristic length is the hydraulic depth. (How about for the Reynolds number?)

4. Energy & Momentum

Froude Number (2)

Classification of open-channel flows

- subcritical flow: Fr < 1

- critical flow: Fr =1

- supercritical flow: Fr > 1

• Critical Slope: The slope of the channel that sustains a given discharge at a uniform and critical depth.

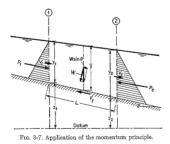
$$S_c = \frac{n^2 g D}{R_b^{4/3}}$$

• Note that the uniform flow on a mild slope is subcritical, but the uniform flow on a steep slope is supercritical.

Ex.4.3

4. Energy & Momentum

Specific Force: 比力



$$\sum F = \rho Q \left(V_2 - V_1 \right)$$

$$\sum F = P_1 - P_2 + W \sin \theta - F_f$$

if the gravity and friction are ignored,

$$\frac{Q^2}{gA_1} + h_{G1}A_1 = \frac{Q^2}{gA_2} + h_{G2}A_2$$

$$F_s = \frac{Q^2}{gA} + h_G A$$

• The force per unit weight of water is conserved.

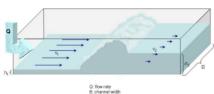
5. Hydraulic Jump

Hydraulic Jump

• What is the role of the hydraulic jump?

5. Hydraulic Jump

Hydraulic Jump



$$y_2 = -\frac{y_1}{2} + \frac{y_1}{2} \sqrt{1 + 8Fr_1^2}$$

$$V_1 y_1 = V_2 y_2$$

$$\frac{\gamma y_1^2}{2} - \frac{\gamma y_2^2}{2} = \rho q \left(V_2 - V_1 \right)$$
$$\frac{V_1^2}{2g} + y_1 = \frac{V_2^2}{2g} + y_2 + h_L$$

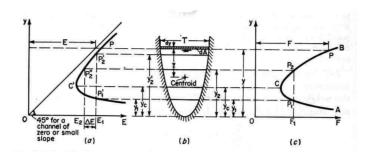
$$\frac{V_1^2}{2g} + y_1 = \frac{V_2^2}{2g} + y_2 + h_L$$

$$h_L = \frac{(y_2 - y_1)^3}{4y_1 y_2}$$

• Three equations and three unknowns

5. Hydraulic Jump

Specific Force Curve



- Two depths of the same Es exist (alternate depths).
- \bullet However, the sub-critical flow after the hydraulic jump has Es $-\Delta E.$
- Two depths of the same specific force are conjugate depths.

Ex.4.4

6. GVF

Gradually Varied Flows

- Features
 - steady flows the water surface of which changes gradually
 - so the pressure change hydrostatically (parallel streamlines)
- · Governing equation:

$$\frac{dy}{dx} = \frac{S_0 - S_e}{1 - Fr^2}$$

here S_0 = bed slope, S_e = slope of energy line, and

$$Fr^2 = \frac{V^2}{gD} = \frac{Q^2T}{gA^3} = fn(y)$$

6. GVF

Backwater Equation 2

$$\frac{dy}{dx} = \frac{S_0 - S_e}{1 - Fr^2}$$

- Non-linear ODE
- dy/dx = 0 when $S_0 = S_e$, indicating the uniform flow.
- Valid for arbitrarily-shaped channel section
- The bank elevation is determined from the stage for the designed flow by calculating the backwater equation.

시간에 따라 급격히 유량 혹은 수위가 변하는 경우를 제외하고는 (실 시간 홍수예경보), 대부분의 홍수 문제는 배수곡선식으로 해결된다.

6. GVF

Backwater Equation 3

$$\frac{dy}{dx} = S_0 \frac{1 - (y_n / y)^{10/3}}{1 - (y_c / y)^3}$$

where

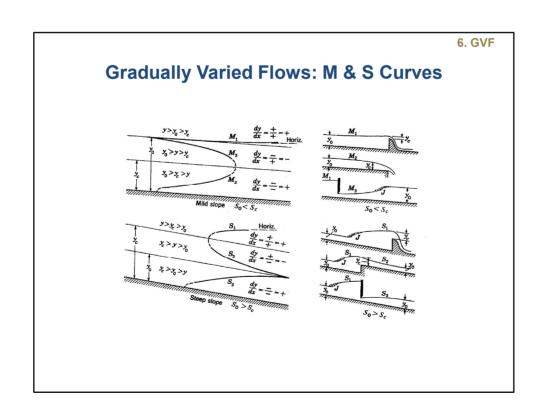
$$S_0 = \frac{n^2 Q^2}{b^2 y_n^{10/3}}$$

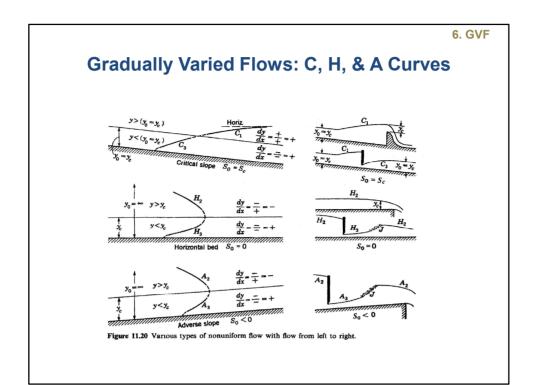
$$S_e = \frac{n^2 Q^2}{b^2 v^{10/3}}$$

$$S_0 = \frac{n^2 Q^2}{b^2 y_n^{10/3}} \qquad S_e = \frac{n^2 Q^2}{b^2 y^{10/3}} \qquad Fr^2 = \left(\frac{y_c}{y}\right)^3$$

for a wide rectangular channel.

• Note that Manning equation (uniform flow formula) is used to estimate the slope of the energy line. How?





Homework

Normal Depth & Critical Depth (1)

• Derive the formulas to calculate the critical depth and normal depth of the trapezoidal channel with different side slopes.

$$\frac{Q_{c}}{g^{1/2}} = \left\{ \frac{\left[bh_{c} + \frac{(m_{L} + m_{R})}{2}h_{c}^{2}\right]^{3}}{b + (m_{L} + m_{R})h_{c}}\right\}^{1/2} \qquad \frac{nQ_{n}}{S^{1/2}} = \left\{ \frac{\left[bh_{n} + \frac{(m_{L} + m_{R})}{2}h_{n}^{2}\right]^{5}}{\left[b + (\sqrt{1 + m_{L}^{2}} + \sqrt{1 + m_{R}^{2}})h_{n}\right]^{2}}\right\}^{1/3}$$

Homework

Normal Depth & Critical Depth (2)

- Obtain the critical depth and normal depth of the channel whose
 - n = 0.02
 - -S = 0.0001
 - Q = 20,000 cms
 - $m_L = 2.5$
 - $m_R = 3.0$
 - b = 1,000 m

You may use Excel(목표값 찾기 기능) or MatLab (not your calculator).